Speaker-independent emotion recognition based on feature vector classification
نویسندگان
چکیده
This paper proposes a new feature vector classification for speech emotion recognition. The conventional feature vector classification applied to speaker identification categorized feature vectors as overlapped and non-overlapped. This method discards all of the overlapped vectors in model training, while non-overlapped vectors are used to reconstruct corresponding speaker models. Although the conventional classification showed strong performance in speaker identification, it has limitations in constructing robust models when the number of overlapped vectors is significantly increased such as in emotion recognition. To overcome such a drawback, we propose a more sophisticated classification method which selects discriminative vectors among overlapped vectors and adds the vectors in model reconstruction. On experiments based on an LDC emotion corpus, our classification approach exhibited superior performance when compared to the conventional method.
منابع مشابه
Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملComparison of Gender- and Speaker-adaptive Emotion Recognition
Deriving the emotion of a human speaker is a hard task, especially if only the audio stream is taken into account. While state-of-the-art approaches already provide good results, adaptive methods have been proposed in order to further improve the recognition accuracy. A recent approach is to add characteristics of the speaker, e.g., the gender of the speaker. In this contribution, we argue that...
متن کاملA hierarchical support vector machine based on feature-driven method for speech emotion recognition
Through the analysis of one-vs.-one, one-vs.-rest and the decision tree mechanism of binary support vector machine emotion classifiers, a method based on feature-driven hierarchical support vector machine is proposed for speech emotion recognition. For each layer, classifier used different feature parameters to drive its performance, and each emotion is subdivided layer by layer. This method di...
متن کاملA Supervised Text-Independent Speaker Recognition Approach
We provide a supervised speech-independent voice recognition technique in this paper. In the feature extraction stage we propose a mel-cepstral based approach. Our feature vector classification method uses a special nonlinear metric, derived from the Hausdorff distance for sets, and a minimum mean distance classifier. Keywords—Text-independent speaker recognition, mel cepstral analysis, speech ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008